怎样用配方法证明:不论x为何实数,多项式2x的四次方-4x的 平方的 值总大于x的 四次方-2x的 平方-4的 值?
题目
怎样用配方法证明:不论x为何实数,多项式2x的四次方-4x的 平方的 值总大于x的 四次方-2x的 平方-4的 值?
答案
=(x^2-1)^2+30恒成立所以不论x为何实数,
即多项式2x的四次方-4x的平方的值总大于x的四次方-2x的平方-4的值
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点