用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式成立

用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式成立

题目
用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式成立
证明当n=k+1时公式也成立.公式左端需乘的式子为_____
答案
当n=k时,左边=(k+1)(k+2)…(k+k)
当n=k+1时,左边 = [(k+1)+1][(k+1)+2]…[(k+1)+(k-1)][(k+1)+k][(k+1)+(k+1)]
= (k+2)(k+3)…(k+k)(2k+1)(k+1)*2
所以从n=k到n=k+1,左端需乘以 2(2k+1)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.