已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.

已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.

题目
已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.
答案
椭圆x^2/4+y^2=1
∴a=2,b=2,则c=√3 (√3表示根号3)
∴|F1F2|=2c=2√3
椭圆定义得到|PF1|+|PF2|=4
∴设|PF1|=x,则|PF2|=4-x
在ΔF1PF2,∠F1PF2=60°
由余弦定理得:
cos60°=[x^2+(4-x)^2-12]/2x(4-x)
计算得:x=2±(2√6)/3
即|PF1|、|PF2|为2±(2√6)/3
∴SΔ=1/2×|PF1|×|PF2|×sin∠F1PF2
=√3/3
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.