求以椭圆3x^2+12y^2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程

求以椭圆3x^2+12y^2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程

题目
求以椭圆3x^2+12y^2=39的焦点为焦点,以直线y=±x/2为渐近线的双曲线方程
答案
∵x^2/13+y^2/(13/4)=1.∴a^2-13,b^2=13/4,a>b,焦点在X轴上.
c2=a2-b^2=13-13/4=39/4.
c=±√39/2.
由渐近线 y=±x/2得:b/a=1/2.a=2b
双曲线的焦半径c,c^2==a ^2+b^2=39/4.
(2b)^2+b^2=39/4.
5b^2=39/4,
b^2=39/20.
a^2=(2b)^2=4b^2=39/5
∴所求双曲线方程为:x^2/(39/5-y^2/(39/20)=1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.