抛物线的焦半径公式 如何推导?

抛物线的焦半径公式 如何推导?

题目
抛物线的焦半径公式 如何推导?
答案
抛物线r=x+p/2
通径:圆锥曲线(除圆)中,过焦点并垂直于轴的弦
双曲线和椭圆的通径是2b^2/a焦准距为a^2/c
抛物线的通径是2p
抛物线y^2=2px (p>0),C(Xo,Yo)为抛物线上的一点,焦半径|CF|=Xo+p/2.
当抛物线方程为 y^2=2px(p>0)
即(开口向右) 时,焦半径r=x+p/2 (其中x为在抛物线上的横坐标,p为焦准距)(利用抛物线第二定义求)
至于抛物线开口方向为其他三个方向时,利用抛物线第二定义求同理可求.如果焦点不在坐标轴上,只需要将x进行相应平移即可,p不变.
y^2=2px为r=p
y^2=-2px为r=p
x^=2px为r=p
x^=-2px为r=p
是焦半径
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.