用二项式定理证明整除

用二项式定理证明整除

题目
用二项式定理证明整除
求证3^(2n+2)-8n-9能被64整除.n是正整数
答案
3^(2n+2)=(3^2)^(n+1)=(8+1)^(n+1)
然后用二项式定理展开,其中8的幂小于2的只有两项:(n+1)*8+1 (8的幂大于2的那些项可以被整除64)
又(n+1)*8+1-8n-9=0
所以3^(2n+2)-8n-9能被64整除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.