已知函数f(x)=kx3-3x2+1(k≥0).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数f(x)的极小值大于0,求k的取值范围.
题目
已知函数f(x)=kx3-3x2+1(k≥0).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数f(x)的极小值大于0,求k的取值范围.
答案
(I)当k=0时,f(x)=-3x2+1∴f(x)的单调增区间为(-∞,0],单调减区间[0,+∞).当k>0时,f'(x)=3kx2-6x=3kx(x-2k)∴f(x)的单调增区间为(-∞,0],[2k,+∞),单调减区间为[0,2k].(II)当k=0时,...
(1)先分类讨论,当k=0时是二次函数,单调区间很快求出,当k≠0时利用导数在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,可求得函数的单调区间.
(2)讨论k,k=0显然不存在极小值,当k>0时,根据第一问的单调性可知f(x)的极小值,建立不等关系,求出变量k的范围即可.
A:利用导数研究函数的极值 B:利用导数研究函数的单调性
本题主要考查了利用导数研究函数的极值,以及利用导数研究函数的单调性,属于基础题.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点