∫(tanx)^2*(secx)^2*(secx)^2x*dx=∫(tanx)^2*(1+tan)^x*dtanx是怎么得到的
题目
∫(tanx)^2*(secx)^2*(secx)^2x*dx=∫(tanx)^2*(1+tan)^x*dtanx是怎么得到的
答案
(secx)^2=1/(cosx)^2=[(cosx)^2+(sinx)^2]/(cosx)^2=1+(tanx)^2
(tanx)'=(sinx/cosx)'=[(cosx)^2+(sinx)^2]/(cosx)^2=(secx)^2、(secx)^2dx=d(tanx)
∫(tanx)^2*(secx)^2*(secx)^(2x)*dx=∫(tanx)^2*[1+(tanx)^2]^x*d(tanx)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点