已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤1/2时,f(x)=x-x²
题目
已知奇函数f(x)的定义域是R,且f(x)=f(1-x),当0≤x≤1/2时,f(x)=x-x²
1.求职f(x)是周期为2的函数 2.求函数f(x)在区间[1,2]上的解析式 3.求f(x)的值域
答案
答:
(1)f(x)=f(1-x)=-f(-x)=-f[1-(-x)]=-f(1+x)=f[-(1+x)]=f(-1-x)=f(1-x-2)
所以:f(x)=f(x-2)
所以:f(x)是周期为2的函数.
(2)0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点