关于积分中值定理的证明
题目
关于积分中值定理的证明
可不可以用拉格朗日中值定理证明呢?利用fx的在[a,b]上的一个原函数Fx,这个原函数下限是a,上限是x∈[a,b],原函数闭区间连续,开区间可导,用拉格朗日中值定理之后,令x=b即可证毕.这样对不?
答案
证明:
把定理里面的c换成x再不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.
做辅助函数G(x)=f(x)-{[f(b)-f(a)]/(b-a)}(x-a).
易证明此函数在该区间满足条件:
1.G(a)=G(b);
2.G(x)在[a,b]连续;
3.G(x)在(a,b)可导.
此即罗尔定理条件,由罗尔定理条件即证
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点