在长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱长为3,E、F分别是AB1、CB1的中点,求证:平面D1EF⊥平面AB1C.

在长方体ABCD-A1B1C1D1中,底面ABCD是边长为2的正方形,侧棱长为3,E、F分别是AB1、CB1的中点,求证:平面D1EF⊥平面AB1C.

题目
在长方体ABCD-A1B1C1D1中,底面ABCD是边长为
2
的正方形,侧棱长为
3
,E、F分别是AB1、CB1的中点,求证:平面D1EF⊥平面AB1C.
答案
作业帮证明:如图,∵E、F分别是AB1、CB1的中点,
∴EF∥AC.
∵AB1=CB1
O为AC的中点,
∴B1O⊥AC.
故B1O⊥EF.
在Rt△B1BO中,∵BB1=
3
,BO=1,
∴∠BB1O=30°.从而∠OB1D1=60°,又B1D1=2,B1O1=
1
2
OB1=1(O1为B1O与EF的交点).
∴△D1B1O1是直角三角形,即B1O⊥D1O1
∴B1O⊥平面D1EF.又B1O⊂平面ACB1
∴平面D1EF⊥平面AB1C.
欲证平面D1EF⊥平面AB1C,根据面面垂直的判定定理可知在平面AB1C内一直线与平面D1EF垂直,而B1O⊥EF,B1O⊥D1O1根据线面垂直的判定定理可知B1O⊥平面D1EF,满足定理条件.

平面与平面垂直的判定.

本小题主要考查平面与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,考查转化思想,属于基础题.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.