已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定义域为[0,1]. (1)求g(x)的解析式; (2)求g(x)的单调区间,确定其单调性并用定义证明; (3)求g(x)的值

已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定义域为[0,1]. (1)求g(x)的解析式; (2)求g(x)的单调区间,确定其单调性并用定义证明; (3)求g(x)的值

题目
已知函数f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定义域为[0,1].
(1)求g(x)的解析式;
(2)求g(x)的单调区间,确定其单调性并用定义证明;
(3)求g(x)的值域.
答案
(1)∵f(x)=3x且f(a+2)=3a+2=18,
∴3a=2.
∴g(x)=3ax-4x=(3ax-4x
∴g(x)=2x-4x
(2)∵函数g(x)的定义域为[0,1],令t=2x
∵x∈[0,1],函数t在区间[0,1]上单调递增,
且t∈[1,2],则g(x)=t-t2在[1,2]上单调递减,
∴g(x)在[0,1]上单调递减.
证明如下:设x1,x2∈[0,1]且x1<x2,则
g(x2)-g(x1
=2x24x22x1+4x1=(2x22x1)(1−2x22x1)
∵0≤x1<x2≤1,
2x22x1
1≤2x1<2,1<2x2≤2
2<2x1+2x2<4
−3<1−2x12x2<−1,可知(2x22x1)•(1−2x22x1)<0
∴g(x2)<g(x1).
∴函数g(x)在[0,1]上为减函数.
(3)∵g(x)在[0,1]上为减函数,
又x∈[0,1],
故有g(1)≤g(x)≤g(0).
∵g(1)=-2,g(0)=0,
∴函数g(x)的值域为[-2,0].
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.