集合论证明题:实数集R的子集E可列,证明存在x属于R且不属于E

集合论证明题:实数集R的子集E可列,证明存在x属于R且不属于E

题目
集合论证明题:实数集R的子集E可列,证明存在x属于R且不属于E
如题:
答案
如果不存在x属于R且不属于E 那么E=R 不可列 矛盾
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.