已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)

已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)

题目
已知双曲线的中心在原点,焦点F1和F2在坐标轴上,离心率为根号2,且过点(4,-根号10)
(1)求双曲线方程
(2)若点M(3,m)在双曲线上,求证MF1⊥MF2
(3) 求三角形F1MF2的面积
答案
1)设方程为 x²/a²-y²/b²=1
∵c²/a²=e²=2 b²=c²-a² ∴b²=2a²-a²=a²
16/a²-10/a²=1 => a²=6 【若计算得a²为负数,则焦点在y轴】
∴方程 x²/6-y²/6=1 为所求.
2)xm=3时,ym=m=±√(9-6)=±√3 (即ym'=√3;ym''=-√3)
∵F1(-√12,0) ; F2(√12,0)
∴M'F1的斜率 k(m'f1)=(ym'-yf1)/(xm'-xf1)=(√3-0)/(3+√12)=2-√3
M'F2的斜率 k(m'f2)=(ym'-yf2)/(xm'-xf2)=(√3-0)/(3-√12)=-2-√3
而2-√3=-1/(-2-√3)
∴M'F1⊥M'F2
同理 M"F1⊥M"F2
∴MF1⊥MF2
∴向量MF1与向量MF2的点积为零.
3)|F1F2|=2√12 |ym|=√3
∴S⊿F1MF2=(|F1F2|*|ym|)/2=2√12*√3/2=6
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.