椭圆y2/a2+x2/b2=1的两焦点F1(0,-c),F2(0,c)且(c>0),离心率e=根号3/2,焦点到椭圆上点最短距离为2-根号3,

椭圆y2/a2+x2/b2=1的两焦点F1(0,-c),F2(0,c)且(c>0),离心率e=根号3/2,焦点到椭圆上点最短距离为2-根号3,

题目
椭圆y2/a2+x2/b2=1的两焦点F1(0,-c),F2(0,c)且(c>0),离心率e=根号3/2,焦点到椭圆上点最短距离为2-根号3,
求椭圆标准方程
答案
焦点到椭圆上点最短距离(对应此焦点的顶点)为2-根号3,所以a-c=2-根号3,又c/a=e=根号3/2,
解得:a=2,;c=√3;b=1 标准方程:y²/4+x²=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.