证明题.若a是自然数,求证:a(a+1)(a+2)(a+3)+1必为完全平方数.
题目
证明题.若a是自然数,求证:a(a+1)(a+2)(a+3)+1必为完全平方数.
答案
不就是因式分解吗?
a(a+1)(a+2)(a+3)+1
=[a(a+3)][(a+1)(a+2)]+1
=(a^2+3a)(a^2+3a+2)+1
=(a^2+3a)^2+2(a^2+3a)+1
=(a^2+3a+1)^2
证明完毕
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点