已知斜率为1的直线过椭圆(x2/4)+y2=1的右焦点交椭圆于A、B两点,求过椭圆|AB|长度

已知斜率为1的直线过椭圆(x2/4)+y2=1的右焦点交椭圆于A、B两点,求过椭圆|AB|长度

题目
已知斜率为1的直线过椭圆(x2/4)+y2=1的右焦点交椭圆于A、B两点,求过椭圆|AB|长度
右焦点(√3,0)
∴直线为y=x-√3
与x2/4+y2=1联立得
x²/4+(x-√3)²=1
5x²-8√3x+8=0
|AB|=√(x2-x1)²+(y2-y1)²
=√2(x2-x1)²
=√2[(x2+x1)²-4x1x2]
=√2[192/25-32/5]
=8/5
最后那个弦长的过程我不明白
答案
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.