求y=2x*tanx导数

求y=2x*tanx导数

题目
求y=2x*tanx导数
答案
(tanx)'
= (sinx/cox)'
= (sinx)' * (1/cosx) + sinx * (1/cosx)'
= cosx/cosx + sinx * [-(cosx)'/(cosx)^2]
= 1 + sinx*sinx/(cosx)^2
= 1 + (sinx)^2/(cosx)^2
= [(cosx)^2 + (sinx)^2]/(cosx)^2
= 1/(cosx)^2
y=2xtanx
y' = (2x)' * tanx + 2x * (tanx)'
= 2 tanx + 2x /(cosx)^2
= (2sinx*cosx + 2x)/(cosx)^2
= (sin2x + 2x)/(cosx)^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.