已知以抛物线y2=4x过焦点的弦为直径且圆心在第四象限的圆截y轴所得弦长为4,那么该圆的方程是_.
题目
已知以抛物线y2=4x过焦点的弦为直径且圆心在第四象限的圆截y轴所得弦长为4,那么该圆的方程是______.
答案
设过焦点的直线与抛物线交点A、B坐标分别为(x1,y1),(x2,y2),圆心C即AB的中点(x0,y0),由抛物线定义得,|AB|=x1+x2+p=x1+x2+2=2x0+2,∴r=x0+1,∵圆截y轴所得的弦长为4∴由勾股定理得,r2=4+x02,即r=x0...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点