A1=1,且An=Sn/n+a(n-1).a是常数.证明An是等差数列
题目
A1=1,且An=Sn/n+a(n-1).a是常数.证明An是等差数列
答案
Sn-S(n-1)=An
所以原式可化为
Sn-S(n-1)=Sn/n+a(n-1)
即Sn/n-S(n-1)/(n-1)=a
所以数列{Sn/n}是等差数列
又S1=A1=1
所以Sn/n=1+(n-1)a
所以An=Sn-S(n-1)=[1+(n-1)a]n-[1+(n-2)a](n-1)=(2n-2)a-1
所以An-A(n-1)=(2n-2)a-1-(2n-4)a+1=2a
即An-A(n-1)=常数
所以An是等差数列
不懂再问,For the lich king
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点