为什么要有原码反码和补码不同的编码
题目
为什么要有原码反码和补码不同的编码
答案
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.
数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为
(-127~-0 +0~127)共256个.
有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).
于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:
(-128~0~127)共256个.
注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确
所以补码的设计目的是:
⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.
⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计
所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 是否存在实数a,使三条直线L1:ax+y+1=0,L2:x+ay+1=0,L3:x+y+a=0能围成一个三角形?说明理由
- “留得枯荷听雨声”好,还是“留得残荷听雨声”好?
- 知道一个角的正弦值,如何求该角的一半的正弦值?
- x+1分之1+2= 2x分之y+(3x的平方)分之y= (a的平方-4)分之(a-6)+(a-2)分之1
- 能不能给我用英语做个简单的自我介绍 带翻译的
- 一道不等式题,谢了,速回
- 高尔基的海燕读后感
- 请用30个词概括这个故事的内涵
- 某科研小组用高岭土(主要成分是Al2O3·2SiO2·2H2O并含少量CaO、Fe2O3)研制新型净水剂(铝的化合物).其实验步骤如下:将土样和纯碱混匀,加热熔融,冷却后用水浸取熔块,过滤,弃去残渣.
- 69分之67*31=?
热门考点