椭圆中焦点三角形面积最大时, 两条焦点弦位置?

椭圆中焦点三角形面积最大时, 两条焦点弦位置?

题目
椭圆中焦点三角形面积最大时, 两条焦点弦位置?
答案
设P是椭圆上一点 ,角F1PF2=θ,焦点三角形F1PF2的面积=b² tan(θ/2)
它可由三个式子推出:
1,∣ PF1∣ + ∣PF2∣ =2a
2,余弦定理:∣PF1∣² + ∣PF2∣² -2∣PF1∣∣PF2 ∣COSθ=∣F1F2∣²
3,三角形面积公式:S=(1/2)∣PF1∣∣PF2∣Sinθ
所以 θ 越大焦点三角形面积越大,由余弦定理可证明,当 P 在短轴的顶点时 θ 最大.
此时 ∣PF1∣=∣PF2∣.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.