设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.
题目
设数列{an}的前n项和为Sn,若对任意正整数,都有Sn=n(a1+an)/2,证明{an}是等差数列.
答案
an=Sn-Sn-1=n(a1+an)/2-(n-1)(a1+an-1)/22an=na1+nan-na1-nan-1+a1+an-1(n-2)an=(n-1)*(an-1)-a1 (1)同理(n-1)*(an+1)=nan-a1 (2)(1)-(2)得到(2n-2)an=(n-1)*(an-1)+(n-1)(an+1)2an=an-1+an+1所以an+1-an=an-an-1得...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点