一元二次方程整数根

一元二次方程整数根

题目
一元二次方程整数根
求使一元二次方程x2+(a-b)x+a=0的两根同时为整数的整数a的值
答案
对于aX^2+bX+c=0形式的一元二次方程
首先为了使其有实数根,需b^2-4ac>=0
然后由韦达定理有x1+x2=-b/a x1*x2=c/a 则a可以整除b、c
因此可以化成X^2+BX+C=0形式 由求根公式有x=(-B+/-根号下(B^2-4C))/2
所以要有根号下(B^2-4C)为整数,而且奇偶性与B相同
我也问过这个问题的.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.