已知椭圆x^2/45+y^2/20=1的两个焦点为F1,F2,P为椭圆上一点,若三角形PF1F2为直角三角形(角F1PF2=90度),求三角形PF1F2的面积
题目
已知椭圆x^2/45+y^2/20=1的两个焦点为F1,F2,P为椭圆上一点,若三角形PF1F2为直角三角形(角F1PF2=90度),求三角形PF1F2的面积
答案
椭圆x^2/45+y^2/20=1c²=a²-b²=45-20=25∴c=5,|F1F2|=10∵P在椭圆上∴|PF1|+|PF2|=2a=2√45=6√5①∵角F1PF2=90度∴|PF1|²+|PF2|²=|F1F2|²∴|PF1|²+|PF2|²=100②①²-②...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点