设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?

设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?

题目
设O为坐标原点,F1,F2是x^2/a^2-y^2/b^2=1(a>0,b>0)的焦点,若双曲线上存在一点P满足∠F1PF2=60°且|OP|=根号7乘a,则双曲线的渐近线方程为?
答案
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.