已知函数f(x)=lnx/x, (1)求函数f(x)的单调区间; (2)设a>0,求函数f(x)在[2a,4a]上的最小值.

已知函数f(x)=lnx/x, (1)求函数f(x)的单调区间; (2)设a>0,求函数f(x)在[2a,4a]上的最小值.

题目
已知函数f(x)=
lnx
x
答案
(1)定义域为(0,+∞),f′(x)=
1−lnx
x2
,令f′(x)=
1−lnx
x2
=0
,则x=e,
当x变化时,f′(x),f(x)的变化情况如下表:

∴f(x)的单调增区间为(0,e);单调减区间为(e,+∞).
(2)由(1)知f(x)在(0,e)上单调递增,在(e,+∞)上单调递减,所以,
当4a≤e时,即0<a≤
e
4
时,f(x)在[2a,4a]上单调递增,
∴f(x)min=f(2a)=
ln(2a)
2a

当2a≥e时,即a≥
e
2
f(x)在[2a,4a]上单调递减,∴f(x)min=f(4a)=
ln(4a)
4a

当2a<e<4a时,即
e
4
<a<
e
2
时,f(x)在[2a,e]上单调递增,f(x)在[e,4a]上单调递减,
∴f(x)min=min{f(2a),f(4a)}.下面比较f(2a),f(4a)的大小,
f(2a)−f(4a)=
lna
4a

∴若
e
4
<a≤1
,则f(a)-f(2a)≤0,此时f(x)min=f(2a)=
ln2a
2a

1<a<
e
2
,则f(a)-f(2a)>0,此时f(x)min=f(4a)=
ln4a
4a

综上得:当0<a≤1时,f(x)min=f(2a)=
ln2a
2a

当a>1时,f(x)min=f(4a)=
ln4a
4a
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.