已知x1x2是方程x²+3x+1=0的两个根,求x1³+8x2+20的值
题目
已知x1x2是方程x²+3x+1=0的两个根,求x1³+8x2+20的值
答案
x1x2是方程x²+3x+1=0的两个根
所以x1+x2=-3 (韦达定理)
x1³+8x2+20=x1(x1)^2+8x2+20
=x1(-3x1-1)+8x2+20
=-3x1^2-x1+8x2+20
=-3(-3x1-1)-x1+8x2+20
=9x1-x1+8x2+20+3
=8(x1+x2)+20+3
=-24+20+3
=-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点