设P是以F1,F2为焦点的双曲线x^2/16-Y^2/9=1上的动点,则三角形F1F2P的重心轨迹方程是?

设P是以F1,F2为焦点的双曲线x^2/16-Y^2/9=1上的动点,则三角形F1F2P的重心轨迹方程是?

题目
设P是以F1,F2为焦点的双曲线x^2/16-Y^2/9=1上的动点,则三角形F1F2P的重心轨迹方程是?
答案
设此重心为(x,y)
则F1(-5,0) F2(5,0)
因此有P点(3x,3y)
又P在双曲线上,因此
(3x)^2/9+(3y)^2/16=1
x^2+9y^2/16=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.