4个连续自然数的乘积加上1一定是平方数.证明

4个连续自然数的乘积加上1一定是平方数.证明

题目
4个连续自然数的乘积加上1一定是平方数.证明
答案
证明:
任何连续四个自然数可以设为n,n+1,n+2,n+3.则其乘积+1是:
n(n+1)(n+2)(n+3)+1
=[n(n+3)(n+2)(n+1)]+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=[(n^2+3n)+1]^2
所以4个连续自然数的乘积加上1一定是平方数.得证.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.