若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  ) A:(-33,33) B:(-33,0)∪(0,33) C:[-33,33] D:(-

若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  ) A:(-33,33) B:(-33,0)∪(0,33) C:[-33,33] D:(-

题目
若曲线C1:x2+y2-2x=0与曲线C2:y(y-mx-m)=0有四个不同的交点,则实数m的取值范围是(  )
A:(-
3
3
3
3

B:(-
3
3
,0)∪(0,
3
3

C:[-
3
3
3
3
]
D:(-∞,-
3
3
)∪(
3
3
,+∞)
答案
由题意可知曲线C1:x2+y2-2x=0表示一个圆,化为标准方程得:(x-1)2+y2=1,所以圆心坐标为(1,0),半径r=1;C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,由直线y-mx-m=0可知:此直线过定点(-1,0),在平面直...
由题意可知曲线C1:x2+y2-2x=0表示一个圆,曲线C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,由两曲线要有4个交点可知,圆与y-mx-m=0要有2个交点,根据直线y-mx-m=0过定点,先求出直线与圆相切时m的值,然后根据图象即可写出满足题意的m的范围.

圆的一般方程;圆方程的综合应用.

此题考查学生掌握直线与圆的位置关系,考查了数形结合的数学思想,是一道中档题.本题的突破点是理解曲线C2:y(y-mx-m)=0表示两条直线.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.