质点p在水平面内沿一半径为r 2m的圆轨道转动,转动的角速度w与时间t的关系为w=ktt(k为常量),已知t=2s时质点p的速度为32m/s.试求t=1s时质点p的加速度与速度的大小

质点p在水平面内沿一半径为r 2m的圆轨道转动,转动的角速度w与时间t的关系为w=ktt(k为常量),已知t=2s时质点p的速度为32m/s.试求t=1s时质点p的加速度与速度的大小

题目
质点p在水平面内沿一半径为r 2m的圆轨道转动,转动的角速度w与时间t的关系为w=ktt(k为常量),已知t=2s时质点p的速度为32m/s.试求t=1s时质点p的加速度与速度的大小
答案
V=wR=ktt*2=2ktt
切向加速度a'=dV/dt=4kt
法向加速度a"=(V^2)/R
t=2s时:
V=2ktt=2k*2*2=8k=32
k=4
t=1s时:
速度V=2ktt=2*4*1*1=8m/s
a'=4kt=4*4*1=16m/s^2
a"=(V^2)/R=8*8/2=32m/s^2
加速度a=根号[(a')^2+(a")^2]=根号(16*16+32*32)=35.8m/s^2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.