已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,(1)设bn=a(n+1)-2an,求证:{bn}为等比数列; (2)
题目
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,(1)设bn=a(n+1)-2an,求证:{bn}为等比数列; (2)
已知数列{an}的前n项和为Sn,且S(n+1)=4an+2,a1=1,
(1)设bn=a(n+1)-2an,求证:{bn}为等比数列;
(2)设Cn=an/2^n,求证:{Cn}为等差数列.
答案
1.S(n+1) = 4an + 2 .(1)
则:Sn = 4a(n-1) + 2 .(2)
两式相减:a(n+1) = 4an - 4a(n-1)
a(n+1) - 2an = 2[an - 2a(n-1)]
∴{a(n+1) - 2an}={bn} 是等比数列,且公比q=2
2.∵S2=a1 + a2 = 4a1 + 2
∴a2=5
则:b1=a2 - 2a1 =3
bn=3×2^(n-1) ,n∈N
即:a(n+1) - 2an =3×2^(n-1)
则:a(n+1)=3×2^(n-1) + 2an
C(n+1) - Cn = a(n+1)/2^(n+1) - an/2^n =[3×2^(n-1) + 2an]/[2^(n+1)] - (2an)/2^n
=[3×2^(n-1)]/[2^(n+1)]
= 3/4
∴{Cn}为等差数列,且公差d=3/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 已知a是一个两位数,b是一个一位数,若把a放的b的右边,组成的三位数是
- 消化实际是一种( ) A.B.吸收营养过程 C.物质变换过程 D.释放能量过程
- 如果关于x的不等式 -13分之(3x+a)
- 已知A(0,-4),B(-3,2),问抛物线y^2=8x上哪一点到直线AB的距离最小,并求最小距离
- 阳光超市运来120箱果汁,比牛奶多五分之三,运来牛奶多少箱?
- integration and inheritance
- 生活中有哪些浪费水的现象?怎样制止
- 《人间词话》中的三境界
- 理念先行 其反义词是什么呢?
- 命题“∃x
热门考点