已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.

已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.

题目
已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点.

(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:平面PAC⊥平面BDE.
答案
(Ⅰ)设O为AC、BD的交点,连接EO
∵E,O分别为PA,AC的中点,
∴EO∥PC.
∵EO⊂平面BDE,PC⊄平面BDE
∴PC∥平面BDE.…(6分)
(Ⅱ)证明:连接OP
∵PB=PD,O为BD的中点
∴OP⊥BD.
又∵在菱形ABCD中,BD⊥AC
且OP∩AC=O
∴BD⊥平面PAC
∵BD⊂平面BDE
∴平面PAC⊥平面BDE.  …(13分)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.