已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
题目
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证:
(1)AE=EC;
(2)AH=2BD.
答案
证明:(1)∵CE是△ABC的高,
∴∠AEC=90°,
∵∠CAB=45°,
∴∠ACE=45°=∠CAE,
∴AE=EC.
(2)∵AD,CE都是△ABC的高,
∴∠AEH=∠CEB=∠ADC=90°,
∵∠AHE=∠CHD,∠EAH+∠AEH+∠AHE=180°,∠BCE+∠CHD+∠ADC=180°,
∴∠EAH=∠BCE,
在△AEH和△CEB中,
,
∴△AEH≌△CEB(ASA),
∴AH=BC,
∵AB=AC,AD是△ABC的高,
∴BC=2BD,
∴AH=2BD.
(1)求出∠AEC=90°,根据三角形内角和定理求出∠ACE=45°=∠CAE即可;
(2)求出AE=EC,∠EAH=∠BCE,∠AEH=∠CEB,证△EAH≌△ECB,推出AH=BC,根据等腰三角形性质得出BC=2BD,即可得出答案.
全等三角形的判定与性质;等腰直角三角形.
本题考查了等腰三角形性质,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- A、B、C三人都喜欢说谎话,有时候也说真话.某天,A指责B说谎话,B指责C说谎话,C说AB两人都在说谎话.
- 帮帮忙!小学四年级语文题目!
- 五分之三:3的比值是( ),化成最简的整数比是( )
- 醒目的反义词
- 情不知所起,一往而深,恨不知所踪,如影随形!求翻译
- At present,the most important thing is that Britain needs ________ more.
- y=tan(x-4/π)的定义域怎么求?
- 1-a的绝对值+a的二次方的平方根化简
- 求一道数学题,算式、答案.
- 已知4^a*3^3b*37^c=3996,其中,a、b、c为自然数,则(2a-b-c)^2009=?