函数f(x)=ax+1/x+2(a为常数) (1)若a=1,证明f(x)在(-2,+∞)上为单调递增函数
题目
函数f(x)=ax+1/x+2(a为常数) (1)若a=1,证明f(x)在(-2,+∞)上为单调递增函数
(2)若a<0,且当x属于(-1,2)时,f(x)的值域为(-4/3,3),求a的值.
答案
(1)当a=1时,f(x)=x+1/x+2
设-2<x1<x2,∴f(x1)-f(x2)=x1-x2/(x1+2)(x2+2)
∵-2<x1<x2,x1<x2∴(x1+2)(x2+2)>0,x1-x2<0
即f(x1)-f(x2)0即a
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点