已知数列{an}的前n项和Sn=an2+bn+c(a≠0),求数列{an}成等差数列的充要条件.

已知数列{an}的前n项和Sn=an2+bn+c(a≠0),求数列{an}成等差数列的充要条件.

题目
已知数列{an}的前n项和S
答案
当n=1时,a1=a+b+c;当n≥2时,an=Sn-Sn-1=2an+b-a
由于a≠0,∴当n≥2时,{an}是公差为2a等差数列.
要使{an}是等差数列,则a2-a1=2a,解得c=0.
即{an}是等差数列的必要条件是:a≠0,c=0.
充分性:
当a≠0,c=0时,Sn=an2+bn
当n=1时,a1=a+b;当n≥2时,an=Sn-Sn-1=2an+b-a,
显然当n=1时也满足上式,
an=2an+b−a(n∈N*)⇒anan−1=2a(n∈N*)
∴{an}是等差数列.
综上可知,数列{an}是等差数列的充要条件是:a≠0,c=0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.