设n阶方阵A满足下面三个条件:A的转置等于A;A的2次方等于A;A的行列式不等于0.证明:A是正定矩阵.

设n阶方阵A满足下面三个条件:A的转置等于A;A的2次方等于A;A的行列式不等于0.证明:A是正定矩阵.

题目
设n阶方阵A满足下面三个条件:A的转置等于A;A的2次方等于A;A的行列式不等于0.证明:A是正定矩阵.
答案
根据已知条件有:A^T = A (A^T表示A的转置),A^2 = A * A = A^T * A=A.对任意的向量X,有X^T * A * X = X^T * A^2 * X = X^T * A * A * X = X^T * A^T * A * X = (AX)^T * (AX),令AX = Y = (y1,...,yn),则:X^T * A * ...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.