已知三角形ABC,角C为直角,且CA=CB,D是CB的中点,E是AB上的一点,且AE=2BE,求证:AD垂直于2EB
题目
已知三角形ABC,角C为直角,且CA=CB,D是CB的中点,E是AB上的一点,且AE=2BE,求证:AD垂直于2EB
用平面向量的数量积解,
应该是AE=2EB,求证AD垂直于CE.对不起,打错了.
答案
是不是题目错了?要是AD垂直于EB,那么AD也垂直于AB了啊!
AD垂直于CE倒是蛮像的
设基向量CA=a,CB=b(上面那个箭头都省略了啊)
那么可以算出BA=a-b,AD=1/2b-a,CE=b+1/3(a-b)=1/3a+2/3b;
计算AD·CE=(1/2b-a)·(1/3a+2/3b)=1/3b方-1/3a方-1/2ab;
角C为直角那么ab=0,CA=CB,则b方=a方,所以AD·CE=0,即AD垂直于CE
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点