证明 4个连续自然数的积加1必是一个完全平方数

证明 4个连续自然数的积加1必是一个完全平方数

题目
证明 4个连续自然数的积加1必是一个完全平方数
答案
设4个连续自然数为n,n+1,n+2,n+3.
n(n+1)(n+2)(n+3)+1
=[n(n+3)][(n+1)(n+2)]+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2
所以,4个连续自然数的积加1必是一个完全平方数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.