已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.

已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.

题目
已知△ABC的边BC上有两点D,E,且BD=CE,求证:AB+AC>AD+AE.
答案
证明:连接AF并延长至G,使FG=AF,其中F是BC的中点,连接GB,GC,GD,GE,
∵BD=CE,
∴DF=EF,
∴四边形ABGC,四边形ADGE是平行四边形,
∴BG=AC,DG=AE,
延长AD至H,交BG于H,
∵AB+BH>AD+DH,DH+HG>DG,
∴AB+BH+DH+HG>AD+DH+DG,
∴AB+BG>AD+DG,
即AB+AC>AD+AE.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.