在用8个不同的数码组成一个八位数中,能被36整除的最小的数是几?

在用8个不同的数码组成一个八位数中,能被36整除的最小的数是几?

题目
在用8个不同的数码组成一个八位数中,能被36整除的最小的数是几?
答案
由分析可知,能被36整除,即能被9整除,又要能被4整除;
0、1、2、3、4、5、6、7、8、9等10个不同数码,和为45,要去掉两个,剩下数码的和仍然是9的倍数,可以去掉4和5,剩下0、1、2、3、6、7、8、9,
八位数能被4整除的充分必要条件是末两位能被4整除,末两位放96,
即能被36整除的最小八位数是:10237896.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.