设x1>-6,xn+1=√xn+6,证明{xn}极限存在

设x1>-6,xn+1=√xn+6,证明{xn}极限存在

题目
设x1>-6,xn+1=√xn+6,证明{xn}极限存在
答案
1、当x1=3时,显然该数列xn=3,极限存在;2、当x1>3时,用数学归纳法来证明数列单调有界x2=√(x1+6)>√(3+6)=3假设xk>3,下证x(k+1)>3x(k+1)=√(xk+6)>√(3+6)=3因此xn>3,数列有下界;下面证明单调性xn-x(n+1)=xn-√(xn+...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.