两圆X2+Y2-4by-1+4b2=0和x2+y2+2ax+a2-4=0.恰有三条公切线,若a,b属于R,且ab≠0,则1/a2+1/b2最小值
题目
两圆X2+Y2-4by-1+4b2=0和x2+y2+2ax+a2-4=0.恰有三条公切线,若a,b属于R,且ab≠0,则1/a2+1/b2最小值
答案
圆的方程:化简x²+(y-2b)²=1圆心(0,2b),半径=1(x+a)²+y²=4圆心(-a,0)半径=2根据题意√(0+a)²+(2b-0)²=1+2a²+4b²=9a²/9+b²/(9/4)=1此为椭圆方程-3≤a...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点