若n为自然数,证明:(4n+3)2-(2n+3)2能被24整除.

若n为自然数,证明:(4n+3)2-(2n+3)2能被24整除.

题目
若n为自然数,证明:(4n+3)2-(2n+3)2能被24整除.
答案
证明:(4n+3)2-(2n+3)2
=[(4n+3)+(2n+3)][(4n+3)-(2n+3)]
=2n(6n+6)
=12n(n+1),
∵n为正整数,
∴n、n+1中必有一个是偶数,
∴n(n+1)是2的倍数,
∴12n(n+1)必是24的倍数,
即:(4n+3)2-(2n+3)2一定能被24整除.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.