设随机变量X,Y相互独立,它们的概率密度分别为:

设随机变量X,Y相互独立,它们的概率密度分别为:

题目
设随机变量X,Y相互独立,它们的概率密度分别为:
答案
可以利用指数分布的特征,得到D(X)=1/4
从原始理论推导的话,D(X)算起来有些麻烦
E(X)=∫(0~无穷)x2e^(-2x)dx=1/2
E(Y)=∫(0~1/4)4x dx=2x²](0~1/4)=1/8
E(X²)=∫(0~无穷)x² 2e^(-2x) dx=1/2
E(Y²)=(0~1/4)4x² dx=4x³/3](0~1/4)=1/48
D(X)=1/2-1/2²=1/4,
D(Y)=1/48-1/64=1/192
因为互相独立,D(X+Y)=1/192+1/4=49/192
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.