化简tanθ·tan2θ+tan2θ·tan3θ+.+tann·θ*tan(n+1)θ
题目
化简tanθ·tan2θ+tan2θ·tan3θ+.+tann·θ*tan(n+1)θ
答案
∵1+tannθ*tan(n+1)θ=[cosnθcos(n+1)θ+sinnθsin(n+1)θ]/cosnθcos(n+1)θ
=cos[(n+1)θ-nθ]/cosnθcos(n+1)θ
=cosθ/cosnθcos(n+1)θ
=cotθ*sinθ/cosnθcos(n+1)θ
=cotθ*sin[(n+1)θ-nθ]/cosnθcos(n+1)θ
=cotθ[sin(n+1)θcosnθ/cosnθcos(n+1)θ-cos(n+1)θsinnθ/cosnθcos(n+1)θ]
=cotθ*[tan(n+1)θ-tannθ]
∴tannθ*tan(n+1)θ=cotθ*[tan(n+1)θ-tannθ]-1
故tanθ·tan2θ+tan2θ·tan3θ+.+tann·θ*tan(n+1)θ
=[cotθ(tan2θ-tanθ)-1]+[cotθ(tan3θ-tan2θ)-1]+.+cotθ[tan(n+1)θ-tannθ]-1
=cotθ[tan(n+1)θ-tanθ]-n
=cotθtan(n+1)θ-n-1
=tan(n+1)θ/tanθ-n-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点