根据数列{an}的前n项和公式,判断下列数列是否成等差,并求出通项公式.

根据数列{an}的前n项和公式,判断下列数列是否成等差,并求出通项公式.

题目
根据数列{an}的前n项和公式,判断下列数列是否成等差,并求出通项公式.
(1)Sn=2n^2-n (2)Sn=2n^2 -n + 1
答案
1
Sn=2n^2-n
S(n-1)=2(n-1)^2-(n-1)
an=Sn-S(n-1)
=2n^2-n-[2(n-1)^2-(n-1)]
=4n-3
an-a(n-1)=(4n-3)-[4(n-1)-3]
=4
是等差an=4n-3;
2.
Sn=2n^2 -n+1
a1=S1=2 -1+1=2
a2=s2-a1=7-2=5
S(n-1)=2(n-1)^2 -(n-1) +1
an=Sn-S(n-1)
=2n^2-n+1-[2(n-1)^2-(n-1)+1]
=4n-3
所以
a1=2
an=4n-3,(n≥2时)
即从第2项起成等差.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.