已知在梯形ABCD中,AB‖DC,且AB=40cm,AD=BC=20cm,∠ABC=120°.
题目
已知在梯形ABCD中,AB‖DC,且AB=40cm,AD=BC=20cm,∠ABC=120°.
点P从点B出发以1cm/s的速度沿着射线BC运动,点Q从点C出发以2cm/s的速度沿着线段CD运动,当点Q运动到点D时,所有运动都停止.设运动时间为t秒.
⑴如图1,当点P在线段BC上且△CPQ∽△DAQ时,求t的值;
⑵在运动过程中,设△APQ与梯形ABCD重叠部分的面积为S,求S关于t的函数关系式,并写出自变量t的取值范围;
答案
由题可知道,ABCD为等腰梯形,CD=2*20*COS60°+40=60(cm)高为20*SIN60°=10√3(cm)因为60°>∠PQC>0°所以∠PQC ∠DAQ>60°(CQ=2BP60-40=20,所以∠DAQ>60°)所以∠DAQ> ∠PQC所以要使△CPQ∽△DAQ,只能∠PQC=∠AQD...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点