已知函数f(x)=ax2-(a+3)x+4, (1)若y=f(x)的两个零点为α,β,且满足0<α<2<β<4,求实数a的取值范围; (2)若函数y=loga+1f(x)存在最值,求实数a的取值范围,
题目
已知函数f(x)=ax2-(a+3)x+4,
(1)若y=f(x)的两个零点为α,β,且满足0<α<2<β<4,求实数a的取值范围;
(2)若函数y=loga+1f(x)存在最值,求实数a的取值范围,并指出最值是最大值还是最小值.
答案
(1)满足条件的图形如下,
所以有
或
⇒
<a<1故所求实数a的取值范围是
(,1);
(2)因为f(x)=a(x-
)
2+4-
.有最值为4-
,
当4-
>0时,
可得,a<0或1<a<9,又a+1>0⇒a>-1.
由复合函数的最值可得
当-1<a<0时,y=log
a+1)f(x)存在最小值
当1<a<9时,y=log
a+1)f(x)存在最小值.
故-1<a<0或1<a<9时,y=log
a+1)f(x)存在最小值.
(1)画出对应图象,由图象得出的结论可以求出实数a的取值范围;
(2)先求真数的最值,再利用复合函数的最值求法求整个函数的最值即可,(注意底数满足的条件).
一元二次方程的根的分布与系数的关系;函数最值的应用.
本题涉及到一元二次方程的根的分布与系数的关系以及函数最值的应用,是对基础知识的综合考查.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 一块棱长12厘米的正方体铁块,要熔铸成长2分米,宽8厘米的长方体铁板,铁板厚多少
- 为什么刚果河没有形成三角洲
- After the car have been damaged,the car was sent to repair.这句话怎么改成时间状语从句
- 修路队计划修公路2.88千米.前3天每天修0.4米,剩下的要求4天修完,平均每天修多少千米?
- 我这里有一句话是用in还是of还是什么?
- 英语翻译
- —X+4
- 在一根长为1000m的铁管两端,有甲乙两个同学,若同学乙在铁管的一端敲下钢管,同学甲把耳朵贴在长钢管的另一端,声音在铁管中的传播速度为5100m/s,求同学乙听到两次声音的时间差
- 出大象外,还有什么动物长得是大象鼻子啊?
- 求问函数可导与连续的关系
热门考点